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Wave Propagation on Nonuniform Transmission Lines

~KE BERGQUIST

Abstract—The problem of wave propagation on nonuniform trans-

mission lines is studied. Equations are presented not ordy for the

reflection coefficient but for the transmission and admittance proper-

ties as well. They are valid under the assumption that only one mode

of propagation exists on the line and that the properties do not

change so rapidly that the fundamental transmission line equations

are no longer applicable. Since all equations are derived for arbitrary

load conditions, an extremely versatile solution of the problem has

been obtained.

I. A SOLUTION OF THE RICCATI DIFFERENTIAL EQUATION OF r(x)

We will study the nonuniform line shown in Fig. 1. The differential

equation of the voltage reflection coefficient r(x) has the form

dr(x)
~ + 27(4 .r(~) + g(..) r(;) s g(~)

where we have introduced the factor

(1)

(2)

In these expressions ~(x) is the propagation factor and Y,(x) is the

characteristic admittance of the line.

The differential equation is of the Riccati type. A series solution

valid at arbitrary load conditions is given by the expression

where
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A= QI+Q3+Q,+. . .

!h=l+QZ+Q, +...

K, =
J

‘fz(x) .dx
0
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0
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‘fz(x) K, dx
0
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K4 = j,(x) .K, d%

Ietc. 0

Q, = ~:f,(d .dx

Q,= ~o’fz(z) .QI .dx

Q3 = ~02-f(x) ~Q, .dx

Q, = j“ozf,(z) Q, .dX

etc.

1

f(x) =@)exp (-2~0’T@dX)

‘2(X) ‘g(x)”exp W@”dx)

The symbols used in this formula are those given in Fig. 1 and (2).

(3)
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Fig. 1. Nonuniform line with symbols.

Although the solution for r(x) given by (3) is valid under very

general conditions, some restrictions have to be observed. Thus it

should be assumed that only one mode of propagation exists on the

line. The solution should also be applied with caution to certain

types of transmission line tapers which change so rapidly that one

might suspect the transmission line equations are no longer valid.

The expression for r(x) can be given a very simple physical inter-

pretation according to which the terms KI and QI correspond to the

primary reflections, and K. and Q., where v >1, to multiple reflec-

tions of higher order. Hence one realizes that the calculations can be

performed to any desired degree of accuracy by considering a suffi-

cient number of K and Q terms. However, very often the convergence

turns out to be so rapid that only a few terms are needed.

The conventional way of solving problems on nonuniform trans-

mission lines is to use an equation that corresponds only to the term

IKl in (3). This solution is obtained immediately from (1) by neglect-

ing the I’z term. This gives a solution which takes into account only

the primary reflections and which also assumes matched conditions.

Certain relations exist between the factors included in (3). Thus

h 02, h and vz are interrelated according to the expression

+2$2 – WI = 1. (4)

Another useful relation can be found between the K and Q terms:

“-1

K, + Q. = ~ (–l)n-l.Kn.QY_n,
v = 2,4, 6,8,...

(5)
n= 1 TZ=1,2, 3,. ... (1)1).

II. THE SCATTERING COEFFICIENTS OF THE NONUNIFORM LINE

Studies on nonuniform lines reported in the literature seem to

have been almost exclusively dealing with the reflection coefficient,

whereas the equally important transmission properties have received

little, if any, attention. The method introduced here, however, lends

itself excellently to determining the latter properties as well.

Being able to calculate both reflection and transmission properties

of the nonuniform line, we can also determine its scattering coeffi-

cients. By using the notations in Fig. 1 and (3) we obtain the follow-

ing expressions:

(6)

Here ai and b; denote incident and reflected voltage waves at the two

ports as shown in Fig. 1.

III. THE ADMITTANCE OF THE NONUNIFORM LINE

Sometimes it is advantageous to determine the admittance Y(x)

instead of the reflection coefficient of the nonuniform line. This is es-

pecially true when the series impedance Z,(x) and the shunt admit-
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Fig.2. [r]versus j30Latan impedance ratio of3:l.
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Fig.3. [r]versus (30Latan impedance ratio of54:l.

tance Yp(x)ofthe line~es mall, asisoftent hecaseatl owfrequencies.

Also in this case we have to solve a Rlccati equation, and the solution

is given by (3) if the exponential term is omitted and the symbols are

exchanged according to the scheme

!

r(z) + Y(2)

r(o) + Y(o)

j,(~) + z.(x)

f,(z) + Y.(x). (7)

The solution for Y(x) has turned out to be particularly useful, for

example in calculations of the propagation of plane waves in lossy,

stratified media at low frequencies.

IV. A NUMERICAL EXAMPLE

In order to give an idea of the usefulness of (3) in a practical case,

the magnitude of the reflection coefficient r(x) of a matched expo-
nential line has been computed for two different impedance ratios.

This particular line has been chosen since it is also possible to derive

an exact expression for its reflection coefficient which can be com-

pared with (3). The characteristic admittance of the exponential line

is supposed to vary as Y.(x) = YO. exp (28x), while its propagation

factor is ~ =jp,. The two values of W that have been used for &x

(8 is a constant and L is the length of the line) are 6-L= 0.55 and

c$L= 2, corresponding to impedance ratios of 3:1 and 54:1, respec-
tively. (Since this is only an illustrative example, no attention is payed

here to the physical realizability of such lines.) The highest order term

used is &,. At the lowest values of /JiIL, the equation for Y(x) has been

used instead of (3) to obtain better convergence.

k The results, which are shown in Figs. 2 and 3, are rather striking.

The curves one gets with the method presented here (solid curves)

coincide within drawing accuracy with the exact ones for all values of

80L at both impedance ratios. The curves obtained when the problem

is solved in the conventional way (dotted curves), on the other hand,

show serious disagreement particularly for the high impedance ratio

and at low values of &IL.

V. CONCLUSION

In this short paper equations are presented for the electrical

properties of a nonuniform line. They are given in series form and are

valid also for 10SSY lines connected to arbitrary loads. The equations

may be applied to all kinds of single-mode transmission lines; for

instance, coaxial lines, strip lines, and waveguides. As a consequence

they can be utilized in the design of many microwave components

containing nonuniform line sections, like resonators, filters, tapered

transitions, etc. In cases where one has the choice, nonuniform line

sections often have advantages over uniform ones. The usefulness of

the eauations derived here is, however, not limited to transmission

lines only. Due to the analogy between the free propagation of plane

waves in a medium and waves on transmission lines, the results may

also be used in the design of certain types of absorbing materials or in

the study of propagation of plane waves in a stratified atmosphere,

to take only two examples.

The well-known fact that the Rlccati eauation can be transformed

by a simple mathematical operation int~ a one-dimensional wave

equation indicates that the equations may be applied in other

fields of physics as well. Thus, for example, it may well be expected

that the solution described in this short paper could be used with

benefit in such fields as acoustics, optics, and quantum mechanics.
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The Lowest Order Mode and the Quasi-TEM Mode

in a Ferrite-Filled Coaxial Line or Resonator

INGO WOLFF

.4b.sfracf-The field distribution of the mode in a ferrite-filled

coaxial cavity, which converges towards the TEM mode in the iso-

tropic case, is dkcussed.

During the last few years there has been a discussion between

M. M. Weiner and M. E. Brodwin and D. A. Miller about the “lowest

order mode” and an approximate theory for this mode, called the

quasi-TEM mode, in a ferrite-filled coaxial line [1 ]– [3 ]. The author

has studied the behavior of all modes in a ferrite-filled coaxial cavity

[4], [5] and would like to give some detailed results for the “lowest

order mode” and the correct conditions for approximating it by the

Suhl and Walker approximation 17] of a quasi-TEM mode.

Basically, there are three different kinds of modes in a ferrite-

filled cavity.
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