SHORT PAPERS

Wave Propagation on Nonuniform Transmission Lines
AKE BERGQUIST

Abstract—The problem of wave propagation on nonuniform trans-
mission lines is studied. Equations are presented not only for the
reflection coefficient but for the transmission and admittance proper-
ties as well. They are valid under the assumption that only one mode
of propagation exists on the line and that the properties do not
change so rapidly that the fundamental transmission line equations
are no longer applicable. Since all equations are derived for arbitrary
load conditions, an extremely versatile solution of the problem has
been obtained.

I. A SoLuTION OF THE RICCATI DIFFERENTIAL EQUATION OF T ()

We will study the nonuniform line shown in Fig. 1. The differential
equation of the voltage reflection coefficient T'(x) has the form
dT'(x)

-+ 2v(2) T(@) + g(2) T = g() &)

where we have introduced the factor

o) = _;_ dln V.(x) )

Tr @

In these expressions y(x) is the propagation factor and Y,(x) is the
characteristic admittance of the line.

The differential equation is of the Riccati type. A series solution
valid at arbitrary load conditions is given by the expression

_ ¢1+I‘(0)~|//2. _ ® .
T'(x) = ———¢2+ T0) v exp ( 2]; v(x) dx) 3)

where

pr=Ki+ Ky -+ K5+
=1+ Ko+ Ks+---
=+ Q+0s+ -
Yo=1+Q:+ Qs+ ---

K= f:fg(x)dx

Ks = fzfl(x)-Kl-dx
0

Ky = fzf2(x)'K2'dx

K4 = f:fl(x)-Ks-dx

etc.

0= [“htw-az
0: = [ “)-Qux
0= [ ") Qus

o= :fz(x)Qs-dx

etc.

f1(x) = g(o)-exp (—z 1} 0’7<x).dx)
falx) = g(x)-exp (2 f ’7<x>-lzx).

The symbols used in this formula are those given in Fig. 1 and (2).
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Fig. 1. Nonuniform line with symbols.

Although the solution for I'(x) given by (3) is valid under very
general conditions, some restrictions have to be observed. Thus it
should be assumed that only one mode of propagation exists on the
line. The solution should also be applied with caution to certain
types of transmission line tapers which change so rapidly that one
might suspect the transmission line equations are no longer valid.

The expression for T'(x) can be given a very simple physical inter-
pretation according to which the terms K; and Q; correspond to the
primary reflections, and K, and (,, where »>1, to muiltiple reflec-
tions of higher order. Hence one realizes that the calculations can be
performed to any desired degree of accuracy by considering a suffi-
cient number of K and Q terms. However, very often the convergence
turns out to be so rapid that only a few terms are needed.

The conventional way of solving problems on nonuniform trans-
mission lines is to use an equation that corresponds only to the term
K, in (3). This solution is obtained immediately from (1) by neglect-
ing the T2 term. This gives a solution which takes into account only
the primary reflections and which also assumes matched conditions.

Certain relations exist between the factors included in (3). Thus
o1, B2, Y1, and s are interrelated according to the expression

o — dupr = 1. @

Another useful relation can be found between the K and Q terms:
=l v=2,4,6,8,---

K, v = —1) Ky -1, o 5
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II. Tue ScaTTERING COEFFICIENTS OF THE NONUNIFORM LINE

Studies on nonuniform lines reported in the literature seem to
have been almost exclusively dealing with the reflection coefficient,
whereas the equally important transmission properties have received
little, if any, attention. The method introduced here, however, lends
itself excellently to determining the latter properties as well.

Being able to calculate both reflection and transmission properties
of the nonuniform line, we can also determine its scattering coeffi-
cients. By using the notations in Fig. 1 and (3) we obtain the follow-
ing expressions:

b z
Sy =— = ﬂ-exp (—2f —y(x)-dx)
@ P2 0
b
Sa = R &
as P2
b 1 z
Su1 = — = —-exp (— f 'y(x)-dx)
@ P2 0
b 1 z

Here a; and b; denote incident and reflected voltage waves at the two
ports as shown in Fig. 1.

II1. THE ADMITTANCE OF THE NONUNIFORM LINE

Sometimes it is advantageous to determine the admittance ¥ (x)
instead of the reflection coefficient of the nonuniform line. This is es-
pecially true when the series impedance Z;(x) and the shunt admit-
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Fig. 2, [T'| versus BoL at an impedance ratio of 3:1.
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tance Y,(x) of the line are small, as is often the case at low frequencies.
Also in this case we have to solve a Riccati equation, and the solution
is given by (3) if the exponential term is omitted and the symbols are
exchanged according to the scheme

I'(x) — Y(x)
() — Y(0)
f1(%) — Zi(x)
fa(w) = Yp(x). )]

The solution for ¥ (x) has turned out to be particularly useful, for
example in calculations of the propagation of plane waves in lossy,
stratified media at low frequencies.

IV. A NUMERICAL EXAMPLE

In order to give an idea of the usefulness of (3) in a practical case,
the magnitude of the reflection coefficient I'(x) of a matched expo-
nential line has been computed for two different impedance ratios.
This particular line has been chosen since it is also possible to derive
an exact expression for its reflection coefficient which can be com-
pared with (3). The characteristic admittance of the exponential line
is supposed to vary as Y.(x) = Y,-exp (28x), while its propagation
factor is v =78,. The two values of §L that have been used for §x
(8 is a constant and L is the length of the line) are 6L =0.55 and
8L =2, corresponding to impedance ratios of 3:1 and 54:1, respec-
tively. (Since this is only an illustrative example, no attention is payed
here to the physical realizability of such lines.) The highest order term
used is K. At the lowest values of 8oL, the equation for ¥ (x) has been
used instead of (3) to obtain better convergence.
¥ The results, which are shown in Figs. 2 and 3, are rather striking.
The curves one gets with the method presented here (solid curves)
coincide within drawing accuracy with the exact ones for all values of
BoL at both impedance ratios. The curves obtained when the problem
is solved in the conventional way {(dotted curves), on the other hand,
show serious disagreement particularly for the high impedance ratio
and at low values of 8oL,
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V. CoNcLusioN

In this short paper equations are presented for the electrical
properties of a nonuniform line. They are given in series form and are
valid also for lossy lines connected to arbitrary loads. The equations
may be applied to all kinds of single-mode transmission lines; for
instance, coaxial lines, strip lines, and waveguides. As a consequence
they can be utilized in the design of many microwave components
containing nonuniform line sections, like resonators, filters, tapered
transitions, etc. In cases where one has the choice, nonuniform line
sections often have advantages over uniform ones. The usefulness of
the equations derived here is, however, not limited to transmission
lines only. Due to the analogy between the free propagation of plane
waves in a medium and waves on transmission lines, the results may
also be used in the design of certain types of absorbing materials or in
the study of propagation of plane waves in a stratified atmosphere,
to take only two examples.

The well-known fact that the Riccati equation can be transformed
by a simple mathematical operation into a one-dimensional wave
equation indicates that the equations may be applied in other
fields of physics as well. Thus, for example, it may well be expected
that the solution described in this short paper could be used with
benefit in such fields as acoustics, optics, and quantum mechanics.
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The Lowest Order Mode and the Quasi-TEM Mode
in a Ferrite-Filled Coaxial Line or Resonator

INGO WOLFF

Abstract—The field distribution of the mode in a ferrite-filled
coaxial cavity, which converges towards the TEM mode in the iso-
tropic case, is discussed.

During the last few years there has been a discussion between
M. M. Weiner and M. E. Brodwin and D. A, Miller about the “lowest
order mode” and an approximate theory for this mode, called the
quasi-TEM mode, in a ferrite-filled coaxial line [1]-[3]. The author
has studied the behavior of all modes in a ferrite-filled coaxial cavity
[4], [5] and would like to give some detailed results for the “lowest
order mode” and the correct conditions for approximating it by the
Suhl and Walker approximation [7] of a quasi-TEM mode-.

Basically, there are three different kinds of modes in a ferrite-
filled cavity.
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